Archive for Charcoal

Interesting observation – charcoal pile

By Kobus Venter

The Vuthisa Biochar Initiative is progressing well thanks to the Energy and Environment Partnership Southern and East Africa funding. EEP-S&EA have partnered with us until July 2015 to fund 50% of our project costs.

We were busy setting up a tent for Biochar storage when I noticed a pile of charcoal “fines” of around 3 tons (under 15 mm diameter) was still there 2 years on. The “fines” was dumped there by us continuously between November 2011 to April 2012.

Biochar_observation

This farm is frequented by cattle, with dung piles littered over it, but no fires have been through it. The area circled in red is the same area in the picture above it – just under 20 months later. The charcoal layer somehow compacted down into the soil and the soil is only reached by digging down 0.5 metres or so.

Another interesting development was the appearance of natural vegetation somehow anchored to the charcoal. See below.

Natural_vegetation_biochar

We have adapted our system to produce quality Biochar now as many of you know.

Kindly subscribe and be informed of our progress.

About these ads

Comments (1) »

Employing aliens to capture carbon

By Kobus Venter

(Extracted from a Green Times article published on 20 February, 2014: http://thegreentimes.co.za/employing-aliens-to-fight-carbon/)

Imagine turning thirsty alien invasive trees into biochar.  Biochar is charcoal created by pyrolysis of biomass. This differs from charcoal only in the sense that its primary use is not for fuel, but for biosequestration or atmospheric carbon capture. If created under specific conditions it can also be suitable as a soil amendment.

The beginnings of biochar

The first attempts at making large volumes of charcoal in ancient times had little to do with creating fuel and more with increasing the fertility of the soil. These soils are known as terra-preta soils, which are fertile, black charcoal-rich soil found in scattered tracts throughout the Amazon basin, dating back 450 to 8,000 B.C.

In the humid tropics most of the nutrients remain in the plant growth. The little organic matter that does reach the forest floor decomposes rapidly. Combined with high rainfall means that most nutrients leache away into the soil unutilised. The terra-preta charcoal, called biochar, attracts certain fungi and microorganisms and allow the charcoal to absorb and retain nutrients that keep the soil fertile for hundreds of years.

micropore structure charcoal biochar

The basis of all charcoal and biochar production is pyrolysis: essentially, breaking wood down into its chemical constituents by heat, with little or no oxygen. Today, popular methods of producing biochar include Top-down open burns, so-called TLUD (Top-lit updraft gasifiers) designs and Closed retorts (whereby feedstock is contained and heated within an enclosed chamber).

The quality of biochar can be informally determined by feel: Good biochar is light and rigid but easily crushed, finely grained, not greasy to the touch, washes off with plain water and lastly has a characteristic metallic ring to it when dropped.

Biochar has a high carbon content (typically over 80%) and adsorption capacity which is a function of the internal surface area. The greater the surface area the higher the absorption capacity and the better biochar will retain moisture and soluble organic matter. Activated carbon however does not make good biochar.

3-drum Biochar Retort

Vuthisa Technologies have developed a retort called the ‘3-drum Biochar Retort’ to make large quantities of biochar in batch type burns. The system comprises of an outer drum containing three 210 L oil drums, serving as the retorts, based on their Trans-Portable Kiln technology.

Lower quality feedstock is loaded into the outer drum and lit. This heat is transferred to the contents of the retorts until carbonised.

Carbon capture

In a world dependent on fossil energy, it is easy to see the carbon capture benefits of biochar as offsets against current and future fossil fuel emissions. Many scientists believe there is already an unsafe excess of carbon dioxide in the atmosphere, this obligates the nations that caused the excess to abate it.

Charcoal has the potential to sequester gigatonnes of atmospheric carbon per annum, making it the most potent engine of atmospheric cleansing we possess. Approximately 8 percent of all atmospheric CO2 is absorbed by plants each year. If just a small proportion of the carbon captured by plants can be pyrolysed and transformed into charcoal, humanity’s prospects will be much brighter, for this will buy us time as we struggle to make the transition to a low emissions economy.

Anything from 3 to 9 tons per hectare of biochar (crushed into a powder form) can be mixed into the soil. Typically the biochar is first inoculated and conditioned with soil microbes and usually first mixed with compost before being placed into the soil.

Benefits of adding biochar to soil

As a soil additive, biochar ground down into powder form and mixed with compost offers numerous potential benefits:

  • Unlike fertilizers, biochar has an extremely long life in soils and is not susceptible to biological decay.
  • Biochar attracts microbes and beneficial fungi (such as mycorrhizae) and holds on to nutrients that are put into the soil.
  • Biochar helps conserve nutrients by storing them within its matrix, making the nutrients available when the crop needs them.
  • Clayey and poorly aggregated soils become less compacted and provide better aeration.
  • Sandy soils acquire additional bulk moisture storage capacity.

Feedstock

The first step in ensuring the successful implementation of the ‘Vuthisa Biochar Initiative’ was to secure the feedstock for the charcoal kilns. Vuthisa Technologies secured a tender from the Government’s Natural Resource Management Programme (NRM), Land User Incentive (LUI) initiative to eradicate Invasive Alien Plant Species (IAPs) within the Sisonke District Municipality, encompassing some 10,000 km2 from Underberg/Ixopo to Kokstad.

The harvesting contract commenced on 1 December 2013 and expires on 31 March, 2016 and in this time period 580 ha of invasive plant species will be harvested and the stumps treated to prevent re-emergence.

Aiming for 25% conversion efficiency

The first goal of the ‘Vuthisa Biochar Initiative’ is to achieve a minimum of 25% wood to biochar conversion efficiency. Current efficiencies of conventional charcoal producing kilns are less than 15%. Using more efficient methods to produce charcoal has the potential to save approximately 100 MtCO2 per year in Sub-Saharan Africa (see here for more information).

As the plant matter decomposes or ferments, predominantly methane gas is released. Venting un-burnt methane into the atmosphere contributes 26 more times to the Greenhouse effect than CO2 alone.  To avoid this Vuthisa will utilise this gas to provide the heat into the retorts and to maintain the biochar forming process within the retorts. They plan to produce 150 tons of Biochar in the next two years and envisage that 20% of this will be bought by fertiliser companies. This could result in at least 30 tons of carbon being sequestered back into the soil.

It is hoped that this project will show at demonstration level that it is profitable to make biochar from forest waste and that it is a viable product.  Other goals include securing additional funding to start biochar trials and fully investigate the agri-commercial development of biochar products for use by subsistence farmers.

A little help from our friends

Vuthisa Technologies secured funding from the Energy and Environment Partnership, Southern and East Africa (EEP-S&EA), sponsored by the Ministry of Finland to start their demonstration project using their internally developed biochar kilns. The project will be implemented over a 20-month period. Now the dilemma is that they have to raise 50% of the capital for the venture, which up to this point has been self-funded.

If you are keen to support, please go here.

Broadly stated the needs list includes:

  1. Hippo Water Rollers and Portable Toilets
  2. Cooking Stoves
  3. Protective Clothing
  4. Tools & Equipment
  5. Biochar Kilns (pictured below)
  6. Environmental Impact Assessment consultancy cost
  7. For the full list, please click here.IMG_1640

 

Please read more at:

Make contact with them on:

 

Leave a comment »

The Vuthisa Biochar Initiative

By Kobus Venter

Welcome to the ‘Vuthisa Biochar Initiative’ blog page. On this page you will learn more about our project and what we hope to achieve. The project officially kicked off in December 2013.

The project actually has many outcomes, but the primary goals are:

Create Employment – Up to 30 workers will be employed in year one. Unemployment is rife (>50%) in the rural areas of KwaZulu-Natal especially with a minimum wage now being introduced for farm workers. The feedstock for the Biochar project will be secured by ‘Vuthisa Charcoal Projects’ through a contract signed with the Department of Environmental Affairs, Natural Resource Management Programme, that pays the wages of our workers.
GroupPhotoEPWP
Eradicate Invasive Alien Plant Species and restore the Natural Biodiversity of the land - We intend to clear over 300 hectares of Wattle in this area and restore the land back to virgin grassland. The main culprit being Acacia mearnsii (Black Wattle) and Acacia decurrens (Green Wattle). Unmanaged Wattles in KwaZulu-Natal has now reached more than 300,000 hectares in extent, according to the Agricultural Research Council (ARC) report commissioned by Water Affairs, 2010. Left untouched, this alien vegetation would spread at an average rate of one percent a year, threatening water and food security.  Concerted efforts are being made to prevent the further spread of these invasives especially in water catchment areas and it is estimated that R 34 Billion ($ 3.4 Billion) will have to be made available over the next 25 years to stop this spread.

SAM_0747

Increase streamflows and reduce erosion – The Wattle trees spreads vigorously through the seed it puts out and these typically germinate in or near river systems, reducing filtration into underground aquafirs and streamflows. At the onset of the infestation when the trees are young, only 500 mm of water is preserved within a typical annual rainfall area of 1200 mm. As the invasives spread, after 24 years only 25% of the entire potential water yield namely 300 mm of water will become part of water supply into the local catchment.

WfW_Logo

Develop Emission Reducing Biochar Kilns and reduce greenhouse gas emissions -Acacia mearnsii is a hardwood species and makes excellent charcoal.  Conventional pyrolysing tecnologies in South Africa however are less than 20% efficient.  Our first goal is to achieve a minimum of 25% wood to biochar conversion efficiency. Using more efficient methods to produce charcoal (or Biochar) has the potential to save about 100 MtCO2 per year in Sub-Saharan Africa (See http://bit.ly/I0KIXl).  CO2 production from Emission Reducing kilns has not been quantified, but a 5 to 10% reduction in GHG’s is expected. We plan to produce 150 tons of Biochar in the next two years and we expect that 20% of this will be bought indirectly by fertiliser companies which could result in at least 30 tons of carbon being sequestered back into the soil.

Kiln_Complete

Develop Biochar Eco-fertilisersBiochar as a soil amendment will allow rural folk to improve their subsistence agriculture. Mixing biochar with soil or a good active organic compost before it goes in the soil will soak up its full compliment of water, nutrients and microbes so that it can make those available immediately to the plants as soon as it is added to the soil. Ultimate concentrations after some time of repeated applications of these eco-fertilisers (chemical free) will work up to about 8 to 10% biochar by weight of the soil content.

biochar trials

See this Google Earth map below of precise location of the clearing operation:

What is Biochar?Biochar is charcoal mixed with compost and applied to the soil as a soil amendment and has the same benefit to plants than chemical fertelizers. The act of burying the Biochar in the soil, removes carbon from the air (CO2) and sequesters carbon into the soil for thousands of years and prevents the release of Methane from harvested plant material into the atmosphere. Methane is a key fuel component to providing the heat into the retorts and in the Biochar forming process.  Venting un-burnt Methane into the atmosphere contributes 26 more times to the greenhouse effect than CO2 alone.  For more information on biochar, feel free to research the many references to Biochar on Google or read more on our Biochar web page: http://vuthisa.com/biochar/
logs

Harvested IAPs ready to be charred

340

Biochar Retorts being primed for firing in Guatemala

Please donate to the project.

The Energy and Environment Partnership fund for Southern and East Africa (EEP-S&EA) have kindly stood up and agreed to fund 50% of the Project Management fees, Site Preparation, Tools and equipment and Administration fees. The EEP Programme in Southern and East Africa is jointly funded by the Ministry of Foreign Affairs of Finland (lead donor), The Austrian Development Agency (ADA) and the UK’s Department for International Development (DFID). For further information visit: http://eepafrica.org/ or http://eepafrica.org/portfolio-item/vuthisa-biochar-initiative/#tab-id-1

EEP_Logo2EEP_Biochar

To donate to the project please get in touch with us.  We offer branding opportunities on Hippo Water Rollers, send out T-shirts and give shout outs on Social Media. Contact us here to find out more.

We accept SWIFT payments whereby money is wired into our project bank account.  Please approach your local bank’s FOREX department and request the appropriate procedure and instructions to follow to expedite this type of payment.

Contact us here for our bank details.

Donate via PayPal (pay with a credit card):

Please Donate

 

 

Donate via EFT:

PayR100

PayR1,000

PayR2,000

PayR5,000

PayR10,000

Please indicate in your bank reference which activity you wish to sponsor.

What will the money be used for?

We will have the following expenditures:

1 –  Water and Sanitation

Instead of purchasing large stationary water tanks to supply drinking water from rainwater harvesting, we thought it would be cool to use Hippo Water Rollers and collect water from the nearby fresh water vlei. Each water roller can hold 90 litres of water. This presents branding opportunities for companies out there, by having their name or logo printed on each Hippo Roller. Visit the website for Hippo Water Rollers here for more information: http://www.hipporoller.org/ The cost of each Hippo Roller is R 1,500 ($ 136) including delivery to the site. We require a minimum of 4 Rollers and a total of R 6000 (± $ 544).

The cost of purchasing and delivering 2 x Portable toilets to the site is R 14,000 (± $ 1,272), and we’ll pay for the fortnightly servicing of the units.

[0%] of “Water and Sanitation” funded to date.

Reviewed on: 20 August, 2014

2 – Cooking Stoves

The cooking stoves we require are special portable wood- and charcoal fuel saving stoves and because we are re-sellers of this product we can provide them at cost to our workers. We require 8 of these stoves to offer the staff with a means to cook their food safely or to boil water. More information here: http://vuthisa.com/news/stovetec/
The cost of delivering 8 stoves to the site is R 3,880 (± $ 352).

[0%] of “Cooking Stoves” funded to date.

Reviewed on: 20 August, 2014

3 – Protective Clothing

To ensure our workers are operating safely and are fully kitted out, we need to supply them with adequate protective clothing (PPE). These include Two-piece overalls, T-shirts, Rainsuits, Gloves, Chainsaw operator safety gear, Goggles and Masks. The most recent quotation revealed that we need R 22,560 (± $ 2,051).

[60%] of “Protective Clothing” funded to date.

Reviewed on: 20 August, 2014

4 – Tools & Equipment

The basic tools and equipment required for the project include Hatchets, Loppers, Knapsack sprayers, Combi-cans, First-aid kits, a Fire extinguisher and Spades. This will cost R 14,500 (± $ 1,318). We have already paid for 2 chainsaws worth R 11,300 (± $ 1,027).

[65%] of “Tools and Equipment” funded to date.

Reviewed on: 20 August, 2014

5 – Biochar Kilns

The specialized Biochar kilns have been developed over many years and are professionally constructed by a light engineering company in Mkondeni, Pietermaritzburg. The cost of each kiln ex-factory is R 9,000 (± $ 886) and we require 3 to start off with for a total of 27,000 ($ 2,658).

[0%] of “Biochar Kilns” funded to date.

Reviewed on: 20 August, 2014

6 – Environmental Impact Assessment consultancy cost

The planned activities for the biochar project and charcoal activities will require an Environmental Impact Assessment (EIA) and an Atmospheric Emission License (AEL).  The entire process is expected to take 11 months to complete.  Cost: R 329,543.22 ($ 32,954) including VAT.

[50%] of “EIA” funded to date.

Reviewed on: 20 August, 2014

When everything is tallied up we need R 87,940 (± $ 7,995) PLUS R 164,771.61 (± $ 14,979) for the EIA and AEL.  The EIA and AEL will be funded from biochar sales, but any donation towards this cost would be very much appreciated.

[25%] of “Vuthisa Biochar Initiative” funded to date.

Reviewed on: 1 December, 2014

In conclusion we would like to thank everyone for their support and that we will do everything in our power to meet the goals of the project.

Or for more information contact us here: http://vuthisa.com/contact-us/

Leave a comment »

Vuthisa Biochar Trials Ivory Coast – Part 1

By Kobus Venter

Here we have Ivoire Consommation from Ivory Coast (Cote d’Ivoire) using the Vuthisa 3-Drum Biochar Retort. A concerted effort was made by Kouamé Bahfi (owner of Ivoire Consommation) to make Biochar and promote it as a soil amendment in his region. In this video Gmelina was carbonized (bought in), using twigs and bamboo as the fuel of choice to heat up the retorts. Later on however, it was found that bamboo placed inside the retorts made excellent Biochar and it worked out cheaper as well. I have it on good authority that he will be trying an Adam Retort, built from adobe bricks next. Watch this space…









Leave a comment »

Vuthisa Biochar Trials Guatemala – Part 1

Herewith Part 1 of the trials and tribulations of starting a Biochar project in Guatemala. Emphasis is on manufacturing Biochar from invasive alien species in the forests of Guatemala, without creating excessive air pollution. Using a retort system means that gaseous products that are normally vented unburnt are in fact now utilised to provide the heat back into the retorts, creating exothermic conditions, providing its own heat for carbonisation. Efficiencies are higher and the final conversion to Biochar (as opposed to making charcoal conventionally) should be around the 25% mark. The ‘3-Drum Retort’ system, whereby lower quality and smaller diameter feedstock is burned as fuel to provide the heat into the internal retorts is in the Beta phase and these types of testing will yield valuable lessons. There were many challenges in getting the kiln on to the farm in question. First it travelled by road on the back of a pickup truck and then by boat some 400 kilometres.

Transport

Then it had to be carried on foot to the burn site. Some innovative approaches are adopted, including the use of bamboo sticks to carry the pieces through the bush.

Other challenges we foresee would be to try to get hold of clay to seal the kiln off and this seems to be in short supply. The humidity is high and the first test burn resulted in creating torrefied wood only, so the burn will have to be extended to allow moisture to be driven off. We suggested placing wood piles close to the kiln to dry pre-dry the wood and to consider two subsequent burns: one burn to create the torrefied wood and a second to turn that into Biochar.

To be continued…








Comments (1) »

Charcoal from invasive alien tree species

By Vuthisa

We recently concluded a feasibility study into the viability of rolling out portable metal kilns to eradicate invasive alien tree species. The cattle farm in question is situated in Franklin, approximately 30 km North of Kokstad, KwaZulu-Natal, South Africa. To achieve this task we adapted the Portable Kiln system and made it into sections in order transport it up onto the mountain top where it was assembled, ready for use. This is a self-funded trial to determine if it is feasible to convert jungle Wattle plantations into charcoal in order to alleviate poverty and transfer skills and ultimately establish Community Based Organisations (CBO’s) …AND preserve our rich species biodiversity!PanoramicView

Kiln_no_retorts

3-drum Biochar Retort

A single Trans-Portable kiln can process 550 kilogram feedstock into approximately 100 kg charcoal (un-sieved) or 50 kg sieved charcoal in a single 24-hour shift. We have since increased our daily yield by increasing the kiln diameter by 40% and adding conical lids and chimneys to increase yields and clean up emissions. The new retort dubbed the 3-drum Biochar Retort can also accept 3 perforated 55 Gal oil drums which is filled with smaller diameter feedstock in order the produce bona fide Biochar, obtained with a substantial reduction in emissions and a 25% yield. We processed a mix of exotic invaders from Australasia Acacia mearnsii (black wattle) and Acacia decurrens (green wattle) on the private farmers’ land and rehabilitated 6 hectares of this jungle back to pristine grassland. We had up to 8 kilns on the mountain. The felled timber was prepared and stacked in piles measuring 1 m (L) x 1 m (W) x 1 m (H) or approximately 280 kg (617 lb) per pile. We had a staff compliment of about twelve people, divided into clearfelling (and stacking) and burning teams. All of the bags (5 kg) produced were sold in Pietermaritzburg, Howick, Margate as well as Durban.

Overall we were quite happy with our feasibility study having been able to test the kilns for durability, conduct valuable market acceptance trials, gather cost breakdown per activity which is invaluable when project is finally scaled up.

Below are some late afternoon vistas of the farm following a thunderstorm, blessing the area with much needed precipitation. This is a very beautiful and picturesque farm and with the invasive wattle eventually removed it will be a polished diamond indeed, as seen through the eyes of the first inhabitants of the area.

For more information contact us.

The Vuthisa Team

(BEE rating: Level 4)

Leave a comment »

Charcoal gas stove

By Vuthisa

Background

This blog post aims to provide the reader with some background on charcoal stove usage as well as charcoal burn characteristics.  Vuthisa developed a unique charcoal stove, able to extract and burn harmful Carbon Monoxide gases inherent to all types of charcoal.

Jiko2

Jiko charcoal stove

We discovered that charcoal use by households is not a new concept and constitutes the primary urban fuel in most of Africa and it is estimated (2003) that approximately 250 million people cook with charcoal. The prevailing tendency in household fuel usage has been to move away from wood fuel towards charcoal for reasons ranging from smokeless burn, ease of use, easy storage, no insect infestation, no need to air-dry, cost effective to transport and high temperature burn.

Rural village in the Eastern Cape provinceSeveral intervention studies have also shown that switching from wood to charcoal can substantially reduce respiratory infections, which may also account for the move over to charcoal. Much of the world’s charcoal feedstock is not plantation wood and the unsustainable harvesting of biomass result in widespread deforestation, thereby handing charcoal its bad reputation. In our context, countries like South Africa (and most developing countries) with well managed commercial plantations and exotic invaders however can provide a sustainable supply of charcoal for household end-use applications. In our opinion improved charcoal stoves should only be sold to communities if the charcoals are produced from carbonised invasive alien vegetation or managed commercial plantations. See our Welcome post in this regard. The manufacturing process is also very polluting and wasteful and there is a serious need of improved charcoal kilns. Join the Portable Kiln Google Group, which I started in order to improve the efficiency of this design or for more information visit this information page and join our design challenge.

More modern fuels such as paraffin- and LP Gas are becoming more popular than fuel wood for cooking and space-heating, but have led to several deaths due to accidental shack fires or lethal gas leaks. Burning charcoal conventionally inside a home is a hazardous and potentially fateful undertaking due to the dangers of Carbon Monoxide (CO) poisoning. I highly recommend Carbon Monoxide Poisoning – A Medical Dictionary, Bibliography, and Annotated Research Guide to Internet References.

Some experts agree however that if issues of concern related to CO such as ventilation and education can be successfully addressed, the widespread implementation of improved charcoal cook stoves should be considered. Traditional charcoal burning stoves such as the metal and ceramic Jiko and Loketto were designed to retail cheaply and provide durability during extended usage, which they do, but failed to address the problem of Carbon Monoxide (CO) poisoning once the occupants go to sleep.

Vuthisa decided to investigate charcoal burning by developing and field testing many prototypes. Feedback from stove users indicated that charcoal can be very abrasive on metal surfaces in direct contact with flames and due to the rapid heating and cooling tendencies of a charcoal fire. Charcoal burned in coal or fuelwood stoves reduced the lifetime of these stoves significantly. Refractory ceramics (and low-density clay bricks) offered the best results as it insulates the fuel from the stove body, but also allows combustion temperatures to rise above 600°C for complete combustion of volatiles.

We discovered that the volatile Carbon Monoxide (CO), a fuel in its own right should instead of being vented off be re-combined with pre-heated Oxygen (O2) from the air in a process termed Gasification. This results in a LP gas-like flame, venting harmless CO2. The process occurs spontaneously and the charcoal fuel batch will burn out in its entirety within 90 minutes from lighting the stove. Depletion of Oxygen levels in a poorly ventilated room can therefore not occur and CO issuance build-up remains below Health and Safety limits.

Best Burn Method

We found it is possible to light the stove indoors with minimal particulate issuance by top lighting the stove using kindling (visit woodheat.org to see the advantages of the top down lighting technique). We monitored CO build-up inside the room with a Draeger X-am 5000 CO monitor, maintaining adequate ventilation. The maximum CO ppm (parts per million) recorded was 30 ppm over a 1.5 hour period. Once the occupants gets exposed to levels of around 200 ppm for extended periods they will experience nausea, headaches and vomiting. Higher levels of around 1000 ppm for example, have far more serious consequences, including falling into a coma and never waking up.

Back to charcoal burning: After the stove is lit, temperatures will continue to rise inside the chamber and more coals will start to combust, although the top layer will be protected by a so-called “pyrolysis wind”. Primary air is drawn up the combustion chamber by virtue of the internal chimney. The stack length has been optimized to control the draft to combine 6 parts air to 1 part fuel, with the secondary air supplying the remaining 6 parts air to resultant 1 part producer gas. Pre-heated secondary air (drawn in along with the primary air before splitting off) will spontaneously interject into the area above the charcoal particles and mix with a constantly escalating supply of producer gas (CO and other volatiles) from the coals. Stoichiometric air/fuel ratio is achieved after approximately 8 to 10 minutes following start-up and gasification commences, the visual clue being a blue flame front forming off the burn plate (catalyst). Most charcoals contain approximately 20 to 30% producer gas, i.e. is not vented during the charcoal manufacturing process and the stove will deplete these supplies in approximately 30 to 40 minutes. The resultant ‘coke’ will also partially gasify and burn to ash over the remaining 30 to 45 minutes. The stove can be operated on a maximum fuel load of 500 grams of charcoal for approximately 1.5 hours. It can use as little as 150 grams of charcoal, sufficient to cook a small meal or for boiling approximately 1 L of water. A full patent was granted in 2006 and is still in force. Double click on video image below to see charcoal stove in action.

We’re not the only ones thinking charcoal gasification has potential in the developing world. See this publication by Ulrich Graf called Low Cost Charcoal Gasifiers for Rural Energy Supply (GTZ, 1994, 49 p.). The publication demonstrates to interested laypersons and experts the conditions and applications under which small charcoal gasifiers can be one option for development within a range of simple energy technologies.

It is also possible to “pipe off” volatiles produced by a charcoal gasifier to run a generator as can be seen in this example:

Or watch this video below showing some of our Bioenergylist discussion group members experimenting with a burner attachment. Double click on the still image below to start video.

I also converted a barbecook® into a charcoal gasifier.  Just to prove the concept as I think flame grilling with charcoal has a lot of potential.

Durability

Remainder of mix poured over mold

Bricks extracted from mould and ready to be firedVuthisa partnered up with the University of KwaZulu-Natal’s Ceramic Department in Pietermaritzburg to develop insulated fire bricks. We have made significant progress with our insulated fire bricks, with the mixture consisting of mainly Al2 O3, Fe2 O3, SiO2, CaO, grog and a light-colored refractory clay. An external supplier was contracted to supply the pre-mixed clay in powdered form. The cost per cubic metre is low and lends itself perfectly for this application. The density is lower than what can be achieved with clay mixes that contained sawdust. Our most recent bricks achieved a density of approximately 0.5 g/cm3 which qualifies it as an extremely lightweight yet durable refractory brick. The bricks and the ash filtering base are then joined together via a specially formulated paste-like cement that can withstand temperatures of up to 1300°C to form a hex shaped combustion chamber.

We also have a monolithic, precast, pre-fired, silicon-hardened, fibrous, refractory ceramic sleeve (not replicable outside South Africa) with a density factor of around 0.5 g/cm3, which is being used in our outdoor camping stove.

Dissemination

Stove programs in South Africa have a poor track record (Wood as a source of fuel in South Africa, MV Gandar, 1983). Attention is all too often focused on fuel efficiency, economics and ease of construction at the expense of the socio-cultural environment. It is therefore important to slowly introduce a new stove concept to the target community to test their acceptance of it, but also to demonstrate the advantages that owning such a stove offers. It will be vital to do product acceptance trials in the proposed project implementation area and adopting a successful dissemination technique will take the stove project towards success through inception to maturation. Extension workers should record cooking technique and fuel usage information. The information must be interpreted to fine tune the design specific to the needs of the community.

In summary

It is hoped that by informing a wider audience, strategies can be formulated to improve charcoal making and charcoal burning technologies.

Camping stove to create awareness

Our prototype portable charcoal camping stove aims to highlight the plight of millions of people cooking on inefficient and unsafe charcoal stoves. It is not for sale at this time. Kindly donate (on the sidebar to the right) to help us bring the stove to the market!

In line with creating awareness around issues concerning indoor air pollution, we also promote the clean-burning StoveTec Rocket stove. Click here for more information.

Enquiries welcome via our Contact us page or visit the News link from time to time for updates.

Leave a comment »

%d bloggers like this: